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Abstract 

We investigate ionization and dissociation effects formed in combustion clouds of Shock-

Dispersed-Fuel (SDF) explosions. Two SDF charges are considered: (i) a 0.5-g spherical 

PETN booster surrounded by a 1-g spherical shell of TNT (!
0
=1 g / cc ), and (ii) a 0.5-g 

spherical PETN booster surrounded by a 1-g spherical shell of flake Aluminum (Al) powder 

with a bulk density of !
0
= 0.6 g / cc . Detonation of the booster creates an expanding cloud 

of explosion product gases and hot fuel (Al or TNT).  When this fuel mixed with the shock-

heated air, it formed a turbulent combustion cloud that consumed the fuel, and liberated 

additional energy (15 kJ/g for TNT or 31 kJ/g for Al) over and above detonation energy of 

the booster (6 kJ/g) that created the explosion; see Kuhl & Reichenbach (2009). 

Characteristic temperatures in such clouds reach 3,000 K to 4,000 K. In the TNT case, 

expansion of the detonation products (DP) drives a strong shock into the air, which creates an 

ionized air shell between the shock and the DP interface; characteristic air temperatures reach 

~ 1 electron volt (Brode, 1957). In the Al-SDF case, such cloud temperatures are high enough 

to dissociate diatomic nitrogen entrained into the cloud by turbulent mixing, and to ionize 

electrons from the Al combustion products. An example of the instantaneous nitrogen atom 

concentration field in an Al-SDF cloud is depicted in Fig. 1; at this time (0.24 ms), 

concentration peaks at n
N
/ n

N2
=19%  (based on Gilmore’s thermodynamic calculations for 

equilibrium air). An example of the instantaneous electron concentration field is presented in 

Fig. 2; at this time (0.24 ms), concentration peaks at n
e
/ n

Al
= 2.7%  (based on the Saha 

equation). In both cases, a conductive combustion cloud is formed, thereby creating an 

effective electric dipole. As this conductive cloud expands, the electric dipole moment 

changes, and an electric field appears in the domain of the explosion. Electromagnetic field 

generation by explosions was first described by Kolsky in Nature (1954); discussion of the 

physical mechanisms of the electromagnetic field generation may be found in review articles 

by Boronin et al. (1990) and Adushkin & Solobiev (2004). Here we investigate such 

combustion clouds via ILES simulations of the turbulent combustion field with our AMR 

code. In the 42nd ICT Conference we presented a survey of our adaptive high-resolution 

methods [5]. A discussion and validation of our gasdynamic model of TNT combustion can 

be found in [6]; details of our heterogeneous continuum model of Al particle combustion and 

validation is described in [7]. These tools will be used to investigate ionization and 

dissociation effects in SDF combustion clouds. 
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Figure 1. Visualization of the instantaneous nitrogen atom concentration field in the combustion cloud 

formed by the explosion of an Aluminum SDF charge ( t = 0.239 ms ); peak concentration is ~19%. 

 

 

Figure 2. Visualization of the instantaneous electron concentration field in the combustion cloud 

formed by the explosion of an Aluminum SDF charge ( t = 0.239 ms ); peak concentration is ~ 2.7%. 


